id_ocr/benchmark/PaddleOCR_DBNet/utils/compute_mean_std.py

46 lines
1.2 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# -*- coding: utf-8 -*-
# @Time : 2019/12/7 14:46
# @Author : zhoujun
import numpy as np
import cv2
import os
import random
from tqdm import tqdm
# calculate means and std
train_txt_path = './train_val_list.txt'
CNum = 10000 # 挑选多少图片进行计算
img_h, img_w = 640, 640
imgs = np.zeros([img_w, img_h, 3, 1])
means, stdevs = [], []
with open(train_txt_path, 'r') as f:
lines = f.readlines()
random.shuffle(lines) # shuffle , 随机挑选图片
for i in tqdm(range(CNum)):
img_path = lines[i].split('\t')[0]
img = cv2.imread(img_path)
img = cv2.resize(img, (img_h, img_w))
img = img[:, :, :, np.newaxis]
imgs = np.concatenate((imgs, img), axis=3)
# print(i)
imgs = imgs.astype(np.float32) / 255.
for i in tqdm(range(3)):
pixels = imgs[:, :, i, :].ravel() # 拉成一行
means.append(np.mean(pixels))
stdevs.append(np.std(pixels))
# cv2 读取的图像格式为BGRPIL/Skimage读取到的都是RGB不用转
means.reverse() # BGR --> RGB
stdevs.reverse()
print("normMean = {}".format(means))
print("normStd = {}".format(stdevs))
print('transforms.Normalize(normMean = {}, normStd = {})'.format(means, stdevs))